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Privacy and Robustness Guarantees in Distributed
Dynamics for Aggregative Games

Mehran Shakarami, Claudio De Persis, and Nima Monshizadeh

Abstract—This paper considers the problem of Nash equi-
librium (NE) seeking in aggregative games, where the payoff
function of each player depends on an aggregate of all players’
actions. We present a distributed continuous time algorithm such
that the actions of the players converge to NE by communicating
to each other through a connected network. A major concern
in communicative schemes among strategic agents is that their
private information may be revealed to other agents or to a
curious third party who can eavesdrop the communications.
We address this concern for the presented algorithm and show
that private information of the players cannot be reconstructed
even if all the communicated variables are compromised. As
agents may deviate from their optimal strategies dictated by the
NE seeking protocol, we investigate robustness of the proposed
algorithm against time-varying disturbances. In particular, we
provide rigorous robustness guarantees by proving input to state
stability (ISS) properties of the NE seeking dynamics. Finally, we
demonstrate practical applications of our theoretical findings on
two case studies; namely, on an energy consumption game and
a charging coordination problem of electric vehicles.

Index Terms—Aggregative games, Nash equilibrium seeking,
privacy.

I. INTRODUCTION

Game theory is the standard tool for studying the interaction
behavior of self-interested agents/players and has attracted
considerable attention due to its broad applications and tech-
nical challenges. An active research topic in this area concerns
aggregative games that model a set of noncooperative agents
aiming at minimizing their cost functions, while the action
of each individual player is influenced by an aggregation of
the actions of all the other players [1]. The most notable
example of aggregative games is the Cournot competition in
economics [2]. These games have appeared in a broad range of
applications such as networked control systems [3], demand-
side management in smart grids [4], charging control of plug-
in electric vehicles [5], and flow control of communication
networks [6].

Existence of a solution for games, Nash equilibrium (NE),
and its uniqueness have been extensively studied in the lit-
erature, and various NE computation algorithms have been
proposed [7]. Earlier works considered the case where each
agent has full access to the actions of all other agents, i.e.,
all-to-all interactions [7], [8]. However, recent works have
attempted to relax this assumption due to computational and
scalability issues. In this regard, the authors in [9], [10], [11]
presented distributed NE seeking algorithms where each player
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computes an estimation of the actions of all the other players
by communicating to its neighbors. Although those algorithms
are applicable to aggregative games, they are inefficient as
they require that each player estimate the action of all other
players. In aggregative games, on the other hand, it is sufficient
that each player estimates the aggregation term. This has led
to various algorithms tailored for aggregative games, which
can be classified as gather and broadcast [12], [13], [14] and
distributed algorithms [15], [16], [17], [18]. The former is
based on the exchange of information with a central aggrega-
tor, whereas the latter relies on a peer-to-peer communication.
This paper falls into the second category and presents a fully
distributed NE seeking algorithm for aggregative games.

From a different perspective, distributed NE seeking al-
gorithms for aggregative games can be divided into discrete
time [15], [19], [16], [17] and continuous time [18], [20]. The
discrete time algorithms are based on best response dynamics
[15, Synchronous Alg.], gossip technique [15, Asynchronous
Alg.], double-layer iterations [19], [16], and forward-backward
iteration [17]. The continuous time algorithms are based
on best response dynamics (gradient based algorithms). The
asynchronous algorithm in [15], needs diminishing step sizes
for exact convergence, which typically slows down the conver-
gence speed, and if a fixed step size is used, the solution will
only converge to a vicinity of the NE. The other algorithms,
on the other hand, employ some tuning parameters shared
among all players. In comparison to those works, we provide
fully distributed conditions for implementing the proposed NE
seeking algorithm, and more importantly, equip our algorithm
with rigorous privacy and robustness guarantees as discussed
below.

Generally speaking, NE seeking algorithms rely on com-
munication either with a central aggregator [12] or among
neighboring agents [15]. In the former approach, it is often
assumed that the aggregator is trustworthy, whereas, in reality,
private information can still be leaked by an aggregator
either willingly or unwillingly. In the latter approach, private
information can be revealed to other players through direct
communication, or leaked to curious adversaries as a result
of eavesdropping. More generally, in order to convince strate-
gic players to participate in any cooperative policy, privacy
guarantees need to be put in place.

Motivated by the above concerns, we investigate the pro-
posed distributed NE seeking algorithm from the viewpoint of
privacy. To this end, we adopt the notion of privacy recently
proposed in [21]. Roughly speaking, privacy is preserved if
private variables of the dynamics cannot be reconstructed
based on the available information on the structure of the
algorithm, the class of payoff functions, measurements, and
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communicated variables. To make sure this is the case, it
will be shown that there are replicas of private variables that
are indistinguishable from the original ones in view of the
available information. An alternative approach would be to use
data perturbation techniques and rely on differential privacy
[22], [23], [24]. The idea behind this technique is to add noise
with appropriate statistical properties to the process under
investigation in order to limit the ability of a curious party in
estimating the private quantities of the system. However, the
added noise will steer the asymptotic behavior of the algorithm
away from the NE of the game . Our approach, on the contrary,
retains the NE of the game while providing privacy guarantees.

The payoff functions do not capture all practical features
of a game, due to the underlying approximations in obtaining
the payoff functions or unidentified parameters. Therefore, it is
crucial that an NE seeking algorithm has suitable robustness
properties. More importantly, robustness is essential due to
possible deviation of the players actions from a fully rational
behavior, examples of which are “stubborn players” [20],
[25] who do not fully obey the NE seeking dynamics, or
“almost” rational players whose decisions are determined
by their “bounded rationality” [26]. Robustness of an NE
seeking algorithm with respect to slowly-varying channel gain
in code division multiple access systems is studied in [27].
Interested readers are referred to [28], [29], [30] for studies
on robustness of gradient systems, saddle-point dynamics, and
optimal frequency regulation of power networks, respectively.

To cope with the imperfections in the payoff functions, we
add bounded time-varying disturbances to the dynamics of the
algorithm, and it will be shown that the proposed distributed
NE seeking algorithm is robust against such perturbations. We
use input-to-state stability (ISS) as a notion of robustness,
which examines whether the state trajectories of the system
are bounded by a function of the perturbation [31].

In summary, the main contribution of the paper is threefold.
First, we provide a fully distributed algorithm in continuous-
time that steers the players to the NE. Second, we provide
privacy guarantees for the proposed algorithm. Third, we show
robustness of the algorithm in the sense of ISS against bounded
time-varying disturbances.

The rest of the paper is organized as follows: Section II
includes preliminaries and the problem formulation. In Sec-
tion III, a distributed NE seeking algorithm is proposed and
its privacy and robustness guarantees are established. The
algorithm is modified in Section IV to deal with the case when
the action of each player is constrained to a compact set. Two
case studies of an energy consumption game and charging of
electric vehicles are provided in Section V. The paper closes
with conclusions in Section VI.

II. NOTATIONS, PRELIMINARIES, AND PROBLEM
STATEMENT

A. Notations

The set of real, positive real, and nonnegative real numbers
are denoted by R, R>0, and R≥0, respectively. We use 0

to denote a vector or matrix of all zeros. The symbol 1n
denotes the vector of all ones in Rn, and In denotes the

identity matrix of size n. We omit the subscript whenever
no confusion arises. The Kronecker product is denoted by
⊗. For given vectors x1, · · · , xN ∈ Rn, we use the short-
hand notation x := col

(
x1, · · · , xN

)
=
[
x>1 , · · · , x>n

]>
and x−i := col

(
x1, · · · , xi−1, xi+1, · · · , xN

)
. We use A :=

blockdiag
(
A1, · · · , AN

)
to denote the block diagonal matrix

constructed from the matrices A1, · · · , AN . A continuous
function α : R≥0 → R≥0 is class K if it is strictly increasing
and α(0) = 0. In addition, it is class K∞ if α(s) → ∞ as
s→∞. A continuous function β : R≥0×R≥0 → R≥0 belongs
to class KL if for any fixed t, the mapping s 7→ β(s, t) belongs
to class K, and for any fixed s, the mapping t 7→ β(s, t) is de-
creasing and β(s, t)→ 0 as t→∞. A function F : Rn → Rn
is (strictly) monotone if (x − y)>(F (x) − F (y)) ≥ 0 (> 0)
for all x 6= y ∈ Rn, and it is µ-strongly monotone if
(x − y)>(F (x) − F (y)) ≥ µ‖x − y‖2 for all x, y ∈ Rn and
some µ ∈ R>0.

B. Algebraic Graph Theory

Let Gc = (I, E) be an undirected graph that models the
network of N agents with I = {1, · · · , N} being the node
set associated to the agents, and E denoting the edge set. Each
element of E is an unordered pair {i, j} with i, j ∈ I. The
graph is connected if there is a path between every pair of
nodes. The set of neighbors of agent i is Ni = {j ∈ I |
{i, j} ∈ E}. The Laplacian matrix of Gc is denoted by L
with Lii equal to the cardinality of Ni, Lij = −1 if j ∈
Ni, and Lij = 0 otherwise. The matrix L of an undirected
graph is positive semidefinite and 1N ∈ ker(L). If the graph is
connected, L has exactly one zero eigenvalue, and im(1N ) =
ker(L). The Moore–Penrose inverse of L is denoted by L+.

C. Projection and Variational Inequality

Given a closed convex set S ⊆ Rn, the projection of a point
v ∈ Rn to S is denoted by projS(v) := arg miny∈S ‖y − v‖.
Given a point x ∈ S, the normal cone of S at x is
the set NS(x) :=

{
y ∈ Rn | y>(z − x) ≤ 0,∀z ∈

S
}

. The tangent cone of S at x ∈ S is denoted by
TS(x) := cl (∪y∈S ∪h>0 h(y − x)) where cl(·) denotes the
closure of a set. For v ∈ Rn and x ∈ S, the projection
of v at x with respect to S is given by ΠS(x, v) :=
lim
h→0+

1
h (projS(x+ hv)− x), and it is equivalent to the pro-

jection of v to TS(x), i.e., ΠS(x, v) = projTS(x)(v). By using
Moreau’s decomposition theorem, a vector v ∈ Rn can be
decomposed as v = projNS(x)(v) + projTS(x)(v) for any
point x ∈ S. Given a mapping F : S → Rn, the variational
inequality problem VI(S, F ) is to find the point x̄ ∈ S such
that (x− x̄)>F (x̄) ≥ 0 for all x ∈ S.

D. Aggregative Games

We consider N players that can choose their action variables
xi in the constraint sets Xi ⊆ Rn. In an aggregative game, each
player aims at minimizing a payoff function Ji : Rn×Rn → R
by choosing the action variable xi. The value of the payoff
function depends on xi and an aggregation of all the other
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action variables. In particular, each player i ∈ I attempts to
solve the following minimization problem

min
xi∈Xi

Ji(xi, s(x))

s(x) :=
1

N

∑
j∈I

hjxj =
1

N
(1>N ⊗ In)Hx,

(1)

where I := {1, · · · , N} is the set of players, hj is a
positive scalar indicating the weight of the action xj in
the aggregation s(x), H := blockdiag(h1In, · · · , hNIn),
and x := col(x1, · · · , xN ). Note that the solution of the
above problem depends on the action of other players. We
use the compact notation Gagg =

(
I, (Ji)i∈I , (Xi)i∈I

)
to

denote the aggregative game in (1). By definition, a point
x∗ := col(x∗1, · · · , x∗N ) is a Nash equilibrium (NE) of the
game if

x∗i ∈ arg min
y∈Xi

Ji(y,
hi
N
y +

1

N

∑
j 6=i

hjx
∗
j ), ∀ i ∈ I.

This means that at the NE, there is no player that can decrease
its payoff by unilaterally changing its action. We note that
x∗i depends on the optimal action of all the other players,
and therefore several coupled optimization problems need to
be solved to obtain x∗. Consequently, standard distributed
optimization techniques cannot be used for solving this prob-
lem. In the next section, we derive local sufficient conditions
for existence and uniqueness of NE and present a distributed
algorithm that asymptotically converges to this point.

III. DISTRIBUTED NE SEEKING DYNAMICS

First, we discuss some auxiliary results that are instrumental
to prove convergence properties of the NE seeking algorithm
proposed later in the section.

Assumption 1 For all i ∈ I, the action set is Xi = Rn, and
the cost function Ji is C2 in all its arguments.

This assumption is similar to [11, Asm. 2(i)], and we will relax
it in Section IV to any compact and convex subset Xi ⊂ Rn.
However, Xi = Rn is considered in this section for clarity of
the presentation.

Let σi ∈ Rn be a local variable associated to each player
i ∈ I, with the payoff function written as Ji(xi, σi), and define

fi(xi, σi) :=
∂

∂xi
Ji(xi, σi) +

hi
N

∂

∂σi
Ji(xi, σi). (2)

It is easy to see that

∂

∂xi
Ji(xi, s(x)) = fi(xi, s(x)).

To proceed further, we need the following assumption:

Assumption 2 For all i ∈ I, xi ∈ Xi, and σi ∈ Rn, the
mapping xi 7→ fi(xi, σi) is µi-strongly monotone, and the
mapping σi 7→ fi(xi, σi) is `i-Lipschitz continuous with µi >
`ihi.

The assumption above is a decentralized version of [12,
Asm. 1] that can be checked locally. The conditions of

Assumption 2 can be replaced by less conservative, yet more
implicit, conditions; see Remark 4.

In game theory, it is well-known that the pesudo-gradient
mapping defined as col

(
(fi(xi, s(x)))i∈I

)
plays a fundamen-

tal role in designing NE seeking algorithms. Motivated by this
and the fact that the players may not have access to s(x), we
introduce the following mapping:

F (x,σ) :=

[
K col

(
(fi(xi, σi))i∈I

)
σ −Hx

]
(3)

where K := blockdiag(k1In, · · · , kNIn) with design parame-
ters ki > 0, and σ := col(σ1, · · · , σN ). The following lemma
captures some properties of (3).

Lemma 1 Let Assumption 2 hold and choose ki such that

ki ∈
( (
√
µi −

√
µi − `ihi)2

`2i
,

(
√
µi +

√
µi − `ihi)2

`2i

)
(4)

is satisfied for each i ∈ I. Then, for all xi ∈ Xi and σi ∈ Rn,
(i) the map F in (3) is ε-strongly monotone.

(ii) the map Kcol
(
(fi(xi, s(x)))i∈I

)
is ε-strongly mono-

tone.

Proof. See Appendix A.

Remark 2 Setting ki = 1, for each i, returns a more
restrictive condition than the one in Assumption 2, namely√
µi > 2(`i + hi). Therefore, introducing the gain ki yields a

milder assumption and, as we will see later, contributes to the
privacy of the proposed algorithm.

We note that the results of the preceding lemma is sufficient
for the existence and uniqueness of the NE. This is formally
stated next.

Lemma 3 Let Assumptions 1 and 2 hold. Then the aggrega-
tive game Gagg =

(
I, (Ji)i∈I , (Xi)i∈I

)
has a unique NE x∗

which satisfies

col
(
(fi(x

∗
i , s(x

∗)))i∈I
)

= 0 (5)

with fi(·) given by (2).

Proof. See Appendix A.

Remark 4 From the presented analysis, one can see that As-
sumption 2 can be relaxed to any payoff function Ji(xi, s(x))
that is strictly convex and radially unbounded in xi for all
x−i ∈ X−i [11, Asm. 2(i)], and results in strong monotonicity
of the mapping col(kifi(xi, σi), σi − hixi) for some ki > 0.

For privacy reasons, we assume that the players do not
communicate their action variables xi, neither to the other
players nor to a central unit. Instead, auxiliary variables will be
communicated through a connected communication graph Gc.
This motivates the following distributed NE seeking policy:

ẋi = −kifi(xi, σi)

σ̇i = −σi + hixi −
∑
j∈Ni

(ψi − ψj)

ψ̇i =
∑
j∈Ni

(σi − σj),
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for each i ∈ I, where Ni denotes the set of neighbors of node
i. Notice that the players only use the local parameters ki and
hi, and communicate the variables σi and ψi. The variable σi
is, in fact, a local estimation of s(x), and the state components
ψi, i ∈ I, are defined to enforce consensus on σi variables.
Let ψ := col(ψ1, · · · , ψN ) and L be the Laplacian matrix of
the graph Gc. Then, the algorithm can be written in vector
form as

ẋ = −Kcol
(
(fi(xi, σi))i∈I

)
σ̇ = −σ +Hx− (L⊗ In)ψ

ψ̇ = (L⊗ In)σ.

(6)

For clarity, we note that the standing assumption in the
remainder of the section is: Assumptions 1 and 2 hold, and ki
is selected according to (4), for each i ∈ I.

First, we characterize the equilibria of (6) and then proceed
with the results concerning convergence, privacy, and robust-
ness.

Proposition 5 Let x∗ be the NE of the game Gagg. Then, any
equilibrium point of (6) is given by (x̄, σ̄, ψ̄) = (x∗,1N ⊗
s(x∗), ψ̄) where ψ̄ ∈ Ψ with

Ψ :=
{
ψ̄ ∈ RnN | ψ̄ = (L+ ⊗ In)Hx∗ + 1N ⊗ ζ, ζ ∈ Rn

}
,

(7)
and L+ is the Moore–Penrose inverse of L.

Proof. At any equilibrium point (x̄, σ̄, ψ̄), we have

0 = −Kcol
(
(fi(x̄i, σ̄i))i∈I

)
(8)

0 = −σ̄ +Hx̄− (L⊗ In)ψ̄ (9)
0 = (L⊗ In)σ̄. (10)

As the graph is connected, from (10), we have σ̄ = 1N ⊗ γ
for some γ ∈ Rn. Therefore, (9) becomes

0 = −1N ⊗ γ +Hx̄− (L⊗ In)ψ̄.

Left-multiplying both sides of the above equality by (1>N⊗In)
gives γ = 1

N (1>N ⊗ In)Hx̄ = s(x̄). This means that σ̄ =
1N ⊗ s(x̄) and in turn, σ̄i = s(x̄). Now, (8) becomes

0 = −Kcol
(
fi(x̄i, s(x̄))i∈I

)
.

Consequently, by using Lemma 3 and K > 0, x̄ is the NE of
the game, i.e., x̄ = x∗ and σ̄ = 1N ⊗ s(x∗). In addition, by
substituting the obtained values and using (42), equality (9)
yields

(L⊗ In)ψ̄ = Hx∗ − 1N ⊗ s(x∗) = (Π⊗ In)Hx∗.

Noting that Π = LL+ = L+L, we conclude that ψ̄ belongs
to the set Ψ given by (7).

Proposition 5, shows that equilibria of (6) are crafted as
desired, namely x̄ and σ̄ return the NE of the game, and
the aggregativve value s(x∗), respectively. The next theorem
establishes convergence of the solutions of (6) to such an
equilibrium.

Theorem 6 Consider the NE seeking algorithm (6) with ini-
tial condition (x(0),σ(0),ψ(0)) ∈ RnN × RnN × RnN .

Then, the solution (x,σ,ψ) converges to the equilibrium point
(x̄, σ̄, ψ̄) = (x∗,1N ⊗ s(x∗),ψ∗) where x∗ is the unique
NE of the aggregative game Gagg and ψ∗ ∈ Ψ is given by
ψ∗ = (L+ ⊗ In)Hx∗ + 1

N (1N1
>
N ⊗ In)ψ(0).

Proof. Let x̃ = x − x̄, σ̃ = σ − σ̄, and ψ̃ = ψ − ψ̄, where
(x̄, σ̄, ψ̄) is an equilibrium of (6). Note that, by Proposition 5,
we have x̄ = x∗, σ̄ = σ̄∗, and ψ̄ ∈ Ψ, with Ψ given by (7).
Consider the following Lyapunov function candidate

V (x̃, σ̃, ψ̃) :=
1

2
‖col(x̃, σ̃, ψ̃)‖2.

As a result, one can use (3) and (6) to get

V̇ = −col(x̃, σ̃)>F (x,σ)− σ̃>(L⊗ In)ψ + ψ̃>(L⊗ In)σ.

By adding and subtracting col(x̃, σ̃)>F (x̄, σ̄) to the right
hand side of the above equation and using Lemma 1(i), we
obtain

V̇ ≤ −ε‖col(x̃, σ̃)‖2 − col(x̃, σ̃)>F (x̄, σ̄)

− σ̃>(L⊗ In)ψ + ψ̃>(L⊗ In)σ. (11)

Noting (3), (8), and (9), we have

−col(x̃, σ̃)>F (x̄, σ̄) = −σ̃>(σ̄ −Hx̄) = σ̃>(L⊗ In)ψ̄.

Consequently, (11) reduces to

V̇ ≤ −ε‖col(x̃, σ̃)‖2 − σ̃>(L⊗ In)ψ̃ + ψ̃>(L⊗ In)σ

= −ε‖col(x̃, σ̃)‖2,

where the last equality is obtained using (10). To con-
clude the proof, we use LaSalle’s invariance principle. Then,
(x,σ,ψ) converges to the largest invariance set in Ω =
{(x,σ,ψ) | x = x̄, σ = σ̄}. Consequently, we derive from
(6) and (9) that ψ ∈ Ψ, given by (7), on the invariant set. Now,
note that (1>⊗In)ψ(t) is a conserved quantity of the system,
and that 1>L+ = 0. Then, by (7), we find that the vector ψ
converges to ψ∗ = (L+ ⊗ In)Hx∗ + 1

N (1N1
>
N ⊗ In)ψ(0),

which completes the proof.

A. Privacy Analysis

We resort to the notion of privacy introduced in [21] to
investigate the privacy of the presented NE seeking algorithm.
In particular, privacy is preserved if a curious party cannot
uniquely reconstruct the actual private variables of the system.
A curious party can be one of the players or an external
adversary.

For technical reasons, in this section, we restrict the cost
functions to

Ji(xi, s(x)) := x>i Qixi + (Di s(x) + di)
>xi,

where Qi = Q>i ∈ Rn×n, Qi > 0, Di ∈ Rn×n, and di ∈ Rn.
Note that in this case, the parameters µi and `i in Assumption
2 are given by

µi := λmin(2Qi + hi
Di +D>i

2N
), `i := ‖Di‖.
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Let

A : = blockdiag(2Qi +
hi
N
D>i ), D := blockdiag(Di)

d : = col(di), ∀i ∈ I.

Then, (6) reduces to

ξ̇ = Aqξ +Dq, (12)

where

Aq : =

−KA −KD 0

H −I −(L⊗ In)
0 (L⊗ In) 0


ξ : = col(x,σ,ψ), Dq := col(−Kd, 0,0).

(13)

Note that the parameters ki, hi, Qi, Di, and di are local
parameters associated to each node i. Similarly, the action
of each player xi is local and will be treated as private
information. On the contrary, both σi and ψi are commu-
nicated to other agents. Therefore, the latter information is
accessible to other players due to direct communication, or
to an adversary as a result of eavesdropping. To provide
strong privacy guarantees, we assume that all communicated
variables and the Laplacian matrix L are public information,
i.e, accessible to a curious party. Such privacy guarantees
are valid even if N − 1 players collude to obtain private
information of one specific player. Moreover, the goal and
structure of the algorithm are considered public. Now, consider
a replica of (12) as follows

ξ̇′ = A′qξ
′ +D′q (14)

A′q : =

−K ′A′ −K ′D′ 0

H ′ −I −(L⊗ In)
0 (L⊗ In) 0


ξ′ : = col(x′,σ′,ψ′), D′q := col(−K ′d′,0, 0),

(15)

where the vectors and matrices with “prime” are defined anal-
ogously to the ones without in (13). Let (x′(t),σ′(t),ψ′(t))
be the solution to (14) resulting from an initial condition
(x′(0),σ′(0),ψ′(0)). Now, we consider the following defi-
nition [21]:

Definition 7 The privacy for the algorithm (12) is preserved
if for any initial condition xi(0) ∈ Rn, there exist x′i(0) ∈ Rn
such that for each i ∈ I we have

σi(t) = σ′i(t), ψi(t) = ψ′i(t), ∀t ≥ 0, (16)

and
xi(t) 6= x′i(t), (17)

for t = 0 and almost all time t > 0.

The idea behind the definition is that a curious adver-
sary cannot infer whether the accessible trajectories σ(t)
and ψ(t) are generated from (12) with the initial condition
(x(0),σ(0),ψ(0)) or from (14) with the initial condition
(x′(0),σ(0),ψ(0)). The resulting confusion limits the ability
of an adversary to reconstruct the private quantities and action
variables of the players. Note that the qualifier “almost” in (17)
is due to the fact that potentially xi(t) and its replica x′i(t) can

coincide on a set of measure zero. Since, we work here with
linear dynamics under a constant input Dq , the condition (17)
can be replaced by xi(0) 6= x′i(0). Now, we have the following
result:

Theorem 8 The NE seeking algorithm (12) preserves privacy.

Proof. Defining y := col(σ,ψ), we have

y = Cqξ, Cq :=

[
0 I 0

0 0 I

]
.

Note that y contains public information. Consider the algo-
rithm (12) and its replica (14). Analogous to [21, Prop. 1],
privacy is preserved in the sense of Definition 7 if and only if
for any initial condition ξ(0), there exists ξ′(0) such that

CqA
k
qξ(0) = CqA

′k
q ξ
′(0)

CqA
k
qDq = CqA

′k
q D

′
q,

(18)

for all k ≥ 0, and x′i(0) 6= xi(0) for each i ∈ I. Note that
the above conditions mean that y = Cqξ(t) = Cqξ

′(t), as
desired. Verifying (18) for k = 0 results in

σ(0) = σ′(0), ψ(0) = ψ′(0). (19)

For k = 1, we obtain

Hx(0)− σ(0)− (L⊗ In)ψ(0) = H ′x′(0)

− σ′(0)− (L⊗ In)ψ′(0)

(L⊗ In)σ(0) = (L⊗ In)σ′(0)

HKd = H ′K ′d′.

By using (19), the above conditions reduce to

Hx(0) = H ′x′(0), HKd = H ′K ′d′. (20)

If we continue this process, it can be seen that the condition
(18) becomes

H(KA)kx(0) = H ′(K ′A′)kx′(0)

H(KA)kKD = H ′(K ′A′)kK ′D′

H(KA)kKd = H ′(K ′A′)kK ′d′,

for all k ≥ 0. Note that HKA = KAH due to block-
diagonal structure of the matrices. Therefore, we obtain the
following set of equalities

Hx(0) = H ′x′(0),

KA = K ′A′,

HKD = H ′K ′D′

HKd = H ′K ′d′.

Let SH := H ′
−1
H and SK := K ′

−1
K. Then, using the

commutativity of the involved matrices, the above conditions
can be rewritten as

x′(0) = SHx(0),

A′ = SKA,

D′ = SKSHD

d′ = SKSHd,
(21)

together with

H ′ = HS−1
H , K ′ = KS−1

K . (22)

Therefore, an adversary cannot distinguish between the actual
system parameters/variables and a replica of the system that
satisfies (21) and (22). This completes the proof.
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Remark 9 In order to retain the privacy for games with
unweighted action variables, hi = 1, a suitable change of
variables can be exploited. In particular, each player i ∈ I
uses a local parameter pi > 0, set xi = pix̂i, and apply the
NE seeking policy

˙̂xi = −ki
pi
fi(pix̂i, σi)

σ̇i = −σi + pix̂i −
∑
j∈Ni

(ψi − ψj)

ψ̇i =
∑
j∈Ni

(σi − σj),

with ki chosen as before. Clearly, in this case, x̂i(t) converges
to p−1

i x∗i . Then, the NE can be retrieved by multiplying the
latter by pi. The fact that the above algorithm preserves privacy
can be shown analogous to Theorem 8.

B. Robustness Analysis
In this section, we again consider the general form of

cost functions Ji(xi, s(x)) and investigate robustness of the
dynamical algorithm (6) against additive perturbations. The
perturbations can capture uncertainty in the payoff functions,
irrationality of the players, or a deliberate addition of noise to
improve privacy.
Let ξ := col(x,σ), G := col(0, (L ⊗ In)), and with
some abuse of the notation F (ξ) := F (x,σ) with F (x,σ)
given by (3). Then, we can rewrite (6) with the disturbance
ν(t) ∈ R2nN as follows

ξ̇ = −F (ξ)−Gψ + ν

ψ̇ = G>ξ.
(23)

To analyze performance of the above algorithm, we resort to
the notion of input-to-state stability (ISS) [32, Def. 4.7] [31].
Let ξ̃ := ξ − ξ̄ and ψ̃ := ψ − ψ̄ with the equilibrium point
(ξ̄, ψ̄) satisfying

0 = −F (ξ̄)−Gψ̄ (24)

0 = G>ξ̄. (25)

Then, (23) is ISS with respect to (ξ̄, ψ̄) if for any
(ξ(0),ψ(0)) ∈ R2nN ×RnN and any measurable and locally
essentially bounded ν(t), the state vector col(ξ̃, ψ̃) satisfies

‖col(ξ̃(t), ψ̃(t))‖ ≤ β0(‖col(ξ̃(0), ψ̃(0))‖, t)
+ β1( sup

0≤τ≤t
‖ν(τ)‖), ∀t ≥ 0,

where β0 and β1 are class KL and class K functions, respec-
tively.

Theorem 10 Consider the NE seeking algorithm (23) with
initial condition (ξ(0),ψ(0)) ∈ R2nN × RnN . Suppose the
disturbance vector ν(t) is measurable and locally essentially
bounded, and assume that there exists some positive constant
γi such that ‖∇fi(xi, σi)‖ ≤ γi for all xi ∈ Xi, σi ∈ Rn,
and i ∈ I. Let ξ∗ := col(x∗,1N ⊗ s(x∗)) and ψ∗ = (L+ ⊗
In)Hx∗+ 1

N (1N1
>
N ⊗In)ψ(0) with x∗ being the unique NE

of the aggregative game Gagg. Then, the NE seeking algorithm
(23) is ISS with respect to the equilibrium point (ξ∗,ψ∗).

Proof. From (23), (24), and (25), we obtain

˙̃
ξ = −(F (ξ)− F (ξ̄))−Gψ̃ + ν

˙̃
ψ = G>ξ̃.

(26)

Define Π := Π⊗ In and φ̃ := Πψ̃. Then, we have

˙̃
ξ = −(F (ξ)− F (ξ̄))−Gφ̃+ ν

˙̃
φ = G>ξ̃,

(27)

where φ̃ = φ− φ̄ with φ̄ := Πψ̄, and we have used the fact
that G = GΠ.

The algorithm (27) is ISS if for a continuously differentiable
function V : R2nN×RnN → R, there exist class K∞ functions
α1, α2, a class K function ρ, and a positive definite function
W (ξ̃, φ̃) such that [32, Thm. 4.19]

α1(‖col(ξ̃, φ̃)‖) ≤ V (ξ̃, φ̃) ≤ α2(‖col(ξ̃, φ̃)‖) (28)

∂V

∂ξ̃

>
˙̃
ξ +

∂V

∂φ̃

>
˙̃
φ ≤ −W (ξ̃, φ̃), ∀ ‖col(ξ̃, φ̃)‖ ≥ ρ(‖ν‖) > 0.

(29)

Let
V (ξ̃, φ̃) :=

1

2
‖col(ξ̃, φ̃)‖2 + κφ̃>G>ξ̃, (30)

for some κ ∈ R>0. Then,

|φ̃>G>ξ̃| ≤ 1

2
(‖Gφ̃‖2 + ‖ξ̃‖2)

≤ max{1, λmax(L)2}
2

‖col(ξ̃, φ̃)‖2,

where λmax(L) is the largest eigenvalue of L. Conse-
quently, (28) is obtained by considering κ ∈ (0, κ1),
α1(‖col(ξ̃, φ̃)‖) = α1‖col(ξ̃, φ̃)‖2, and α2(‖col(ξ̃, φ̃)‖) =
α2‖col(ξ̃, φ̃)‖2, with κ1 = 1

max{1,λmax(L)2} and

α1 =
1− κmax{1, λmax(L)2}

2

α2 =
1 + κmax{1, λmax(L)2}

2
.

We compute the time derivative of V along the solutions of
the system, and use (27) together with ε-strong monotonicity
of F (ξ) to obtain

V̇ ≤ −ε‖ξ‖2 + κ‖G>ξ̃‖2 − κφ̃>G>(F (ξ)− F (ξ̄))

− κ‖Gφ̃‖2 + (ξ̃ + κGφ̃)>ν.
(31)

Define

U(ξ, ξ̄) :=

∫ 1

0

∇F (ξ̄ + s(ξ − ξ̄))ds.

By the fundamental theorem of calculus, we have

F (ξ)− F (ξ̄) = U(ξ̄, ξ)ξ̃.

Substituting the equality above into (31) yields

V̇ ≤ −col(ξ̃, Gφ̃)>P (ξ, ξ̄) col(ξ̃, Gφ̃) + col(ξ̃, φ̃)>R ν,
(32)

where

P (ξ, ξ̄) :=

[
εI − κGG> 1

2κU(ξ, ξ̄)>
1
2κU(ξ, ξ̄) κI

]
, R :=

[
I

κG>

]
.
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Clearly, the matrix P is positive definite if and only if, for all
ξ ∈ R2nN ,

κ > 0, εI − κGG> − 1

4
κU(ξ, ξ̄)>U(ξ, ξ̄) > 0.

By using ‖∇fi(xi, σi)‖ ≤ γi, it is straightforward to investi-
gate that ‖U(·, ·)‖2 ≤ γ̄2 + h̄ 2 + 1, where γ̄ := maxi∈I(γiki)
and h̄ := maxi∈I hi. Hence, we conclude that P > 0
if κ ∈ (0, κ2) with κ2 = 4ε

γ̄2+h̄ 2+1+4λmax(L)2 . Therefore,
there exists δ > 0 such that P ≥ δI . Moreover, we have
‖R‖ =

√
1 + κ2λmax(L)2. Then, by (32), we find that

V̇ ≤ −δ‖col(ξ̃, Gφ̃)‖2 +
√

1 + κ2λmax(L)2‖col(ξ̃, φ̃)‖‖ν‖.
(33)

Noting that φ̃ ∈ im(Π), we have

‖Gφ̃‖ ≥ λmin(L)‖φ̃‖,

where λmin(L) is the smallest nonzero eigenvalue of L. This
together with (33) results in

V̇ ≤ −m‖col(ξ̃, φ̃)‖2 +
√

1 + κ2λmax(L)2‖col(ξ̃, φ̃)‖‖ν‖,

where m := δmin{1, λmin(L)2}. Hence, (29) is obtained by
setting W (ξ̃, φ̃) = α3‖col(ξ̃, φ̃)‖2 and ρ(‖ν‖) = α4‖ν‖ with

α3 = m(1− β)

α4 =
1

βm

√
1 + κ2λmax(L)2,

for some β ∈ (0, 1). Consequently, (27) is ISS for 0 < κ <
min{κ1, κ2}, and we have

β0(‖col(ξ̃(0), ψ̃(0))‖, t) =

√
α2

α1
e−

α3
2α2

t‖col(ξ̃(0), ψ̃(0))‖

β1( sup
0≤τ≤t

‖ν(τ)‖) =

√
α2

α1
α4 sup

0≤τ≤t
‖ν(τ)‖.

Note that we have shown the ISS property in the co-
ordinates (ξ̃, φ̃), where φ̃ = Πψ̃. In addition, note that
the incremental form (26) can be written with respect to
any equilibrium (ξ̄, ψ̄), where ξ̄ = ξ∗ and ψ̄ ∈ Ψ by
Proposition 5. To conclude the ISS property of (23) with
respect to the equilibrium point (ξ∗,ψ∗), it suffices to show
that Π(ψ(t) − ψ∗) = ψ(t) − ψ∗, for all t. The latter is
equivalent to

(1N1
>
N ⊗ In)(ψ(t)−ψ∗) = 0,

which can be rewritten as

1N ⊗ (1>N ⊗ In)(ψ(t)−ψ∗) = 0.

Noting that (1>N ⊗ In)ψ(t) is a conserved quantity of the
system, the above equality reduces to (1>N⊗In)(ψ(0)−ψ∗) =
0. The latter holds, noting the definition of ψ∗ in the theorem.
This completes the proof.

Remark 11 1 In the case of general games and by considering
suitable assumptions on the pesudo-gradient mapping, the
presented NE seeking algorithm in [11] is exponentially stable
[11, Thm. 1 and 2]. Therefore, it is also ISS with respect to

1The authors thank Sergio Grammatico for pointing out this connection.

additive time-varying disturbances [32, Lem. 4.6]. However,
that algorithm is fundamentally different than ours, which
makes the analysis dissimilar. Specifically, the consensus term
in [11] appears as damping on the relative state variables,
which contributes to the exponential convergence property. For
our presented algorithm, the consensus action appears as cross
terms, resulting in the presence of undamped communicating
variables ψ in (23). To overcome this technical difficulty, we
included a sufficiently small cross-term in the ISS Lyapunov
function (see the second term in the right hand side of (30)).

Remark 12 The assumption of the boundedness of
‖∇fi(·, ·)‖ can be relaxed at the expense of establishing ISS
in a local sense. In particular, for any compact set around
the equilibrium, one can find restriction on the size of the
disturbance such that ISS locally holds [33].

IV. DISTRIBUTED NE SEEKING DYNAMICS FOR
CONSTRAINED ACTIONS

This section extends the NE dynamics to the case when the
action set is constrained to a compact set. Let the action set
be given by Xi ⊂ Rn, and consider the following assumption.

Assumption 3 ([11, Asm. 2(ii)]) For all i ∈ I, the action set
Xi ⊂ Rn is non-empty, convex, and compact, and the cost
function Ji is C1 in all its arguments.

The following lemma proves that the game has a unique
NE.

Lemma 13 Let Assumptions 2 and 3 be satisfied, then the
aggregative game Gagg =

(
I, (Ji)i∈I , (Xi)i∈I

)
with the cost

function (1) has a unique NE x∗ ∈ X which is the solution
of the variational inequality VI(X ,Kcol

(
(fi(xi, s(x)))i∈I

)
)

with X :=
∏
i∈I Xi, fi(·) defined as (2), and ki selected as

(4).

Proof. The claim can be proven by suitably adapting the
results of [8]. For the sake of completeness, we have provided
a proof in Appendix A.

To obtain the NE of the game in a distributed fashion, we again
assume that the agents can exchange some variables through
a connected undirected graph Gc, and consider the following
algorithm

ẋi = ΠXi (xi,−kifi(xi, σi))

σ̇i = −σi + hixi −
∑
j∈Ni

(ψi − ψj)

ψ̇i =
∑
j∈Ni

(σi − σj),
(34)

where i ∈ I and ΠXi(xi, v) is the projection operator of the
vector v ∈ Rn on to the tangent cone of Xi at the point
xi ∈ Xi. In vector form we have

ẋ = ΠX
(
x,−Kcol

(
(fi(xi, σi))i∈I

))
σ̇ = −σ +Hx− (L⊗ In)ψ

ψ̇ = (L⊗ In)σ.

(35)
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Note that (35) is a discontinuous dynamical algorithm due to
the projection operator. Therefore, we briefly discuss existence
and uniqueness of solutions for this system. Consider the
collective projected-vector form of the algorithm as follows

col(ẋ, σ̇, ψ̇) = ΠX×RnN×RnN
(

col(x,σ,ψ),−Fext(x,σ,ψ)

)
,

where
Fext(x,σ,ψ) :=

[
F (x,σ) +Gψ
−(L⊗ In)σ

]
,

with F (x,σ) given by (3) and G := col(0, (L⊗ In)). Using
Assumption 3 and the fact that RnN is a clopen set (closed-
open set), the set X × RnN × RnN is closed and convex. In
addition, by considering Lemma 1, it follows that Fext(x,σ,ψ) is
monotone. Therefore, from [34, Thm. 1], we conclude that for
any initial condition (x(0),σ(0),ψ(0)) ∈ X × RnN × RnN ,
the algorithm (35) has a unique solution which belongs to
X×RnN×RnN for almost all t ≥ 0. Converging the algorithm
to a point corresponding to the NE of the game is established
next.

Theorem 14 Let Assumptions 2 and 3 be satisfied, and con-
sider the NE seeking algorithm (35) with initial condition
(x(0),σ(0),ψ(0)) ∈ X × RnN × RnN . Then, the solution
(x,σ,ψ) converges to the equilibrium point (x̄, σ̄, ψ̄) =
(x∗,1N ⊗ s(x∗),ψ∗) where x∗ is the unique NE of the
aggregative game Gagg and ψ∗ ∈ Ψ is given by ψ∗ =
(L+ ⊗ In)Hx∗ + 1

N (1N1
>
N ⊗ In)ψ(0).

Proof. At the equilibrium point (x̄, σ̄, ψ̄), by (35), we have

0 = ΠX
(
x̄,−Kcol

(
(fi(x̄i, σ̄i))i∈I

))
0 = −σ̄ +Hx̄− (L⊗ In)ψ̄

0 = (L⊗ In)σ̄.

(36)

Similar to the proof of Proposition 5, it can be shown that σ̄ =
1N ⊗s(x̄). Consequently, we obtain the following equality by
using Moreau’s decomposition theorem

0 = ΠX
(
x̄,−Kcol

(
(fi(x̄i, s(x̄)))i∈I

))
= −Kcol

(
(fi(x̄i, s(x̄)))i∈I

)
− projNX (x̄)

(
−Kcol

(
(fi(x̄i, s(x̄)))i∈I

))
,

where NX (x̄) is the normal cone of X at x̄ ∈ X . This means
that

−Kcol
(
(fi(x̄i, s(x̄)))i∈I

)
∈ NX (x̄).

In other words, x̄ is the solution of
VI(X ,Kcol

(
(fi(xi, s(x)))i∈I

)
), and from Lemma 13,

we conclude that x̄ = x∗. The proof of ψ̄ ∈ Ψ is similar to
Proposition 5.

To show convergence, let ξ := col(x,σ), Λ := X × RnN ,
F (ξ) = F (x,σ), and the Lyapunov function candidate
V (ξ̃, ψ̃) := 1

2‖col(ξ̃, ψ̃)‖2 with ξ̃ = ξ − ξ̄ and ψ̃ = ψ − ψ̄.
By using (35) and the definition of G, we obtain

V̇ = ξ̃>ΠΛ

(
ξ,−F (ξ)−Gψ

)
+ ψ̃>G>ξ.

By Moreau’s decomposition theorem, we find that

ξ̃>ΠΛ

(
ξ,−F (ξ)−Gψ

)
= ξ̃>

(
− F (ξ)−Gψ

− projNΛ(ξ)

(
− F (ξ)−Gψ

))
.

Noting ξ̄ ∈ Λ, we have

−ξ̃>projNΛ(ξ)

(
− F (ξ)−Gψ

)
≤ 0,

and the time derivative of V admits the following inequality

V̇ ≤ −ξ̃>F (ξ)− ξ̃>Gψ + ψ̃>G>ξ. (37)

Moreover, from (36) and Moreau’s decomposition theorem we
get

0 = ξ̃>ΠΛ

(
ξ̄,−F (ξ̄)−Gψ̄

)
= ξ̃>

(
− F (ξ̄)−Gψ̄ − projNΛ(ξ̄)

(
− F (ξ̄)−Gψ̄

))
.

Since
−ξ̃>projNΛ(ξ̄)

(
− F (ξ̄)−Gψ̄

)
≥ 0,

we conclude that ξ̃>
(
F (ξ̄) + Gψ̄

)
≥ 0, which can be

employed to rewrite (37) as

V̇ ≤ −ξ̃>
(
F (ξ)− F (ξ̄)

)
− ξ̃>Gψ̃ + ψ̃>G>ξ

≤ −ε‖ξ̃‖2,

where the last inequality is obtained by using (36) and
the fact that F (ξ) is ε-strongly monotone. By follow-
ing an analogous argument to [35, Thm. 2], we con-
clude that the solution (x,σ,ψ) converges to the set
Ω = {(x,σ,ψ) | x = x̄, σ = σ̄,ψ ∈ Ψ}. Noting that (1>N ⊗
In)ψ(t) is an invariant quantity of the system, similar to
Theorem 6, we conclude that ψ converges to ψ∗.

V. CASE STUDIES

In this section, we consider two illustrative case studies that
are formulated as aggregative games.

A. Energy Consumption Game

This case study considers the energy consumption problem
of consumers with heating ventilation air conditioning (HVAC)
systems in smart grids. As proposed in [36], this problem can
be formulated into a noncooperative game where each con-
sumer chooses its energy consumption such that the following
payoff function is minimized

Ji(xi, s(x)) = θγ2(xi − x̂i)2 + (aNs(x) + b)xi,

where the positive constant parameters θ, γ, and a are the cost,
the thermal, and the price-elasticity coefficients, respectively.
The scalar b ∈ R>0 is a basic price for unite energy
consumption, xi ∈ Xi is the energy consumption of consumer
i, x̂i ∈ Xi is the required energy consumption for maintaining
the target indoor temperature, and Ns(x) =

∑
j∈I xj is the

total energy consumption. The action set Xi ⊂ R is defined as
Xi :=

{
xi ∈ R | xi ∈ [xi, x̄i]

}
where the positive constants

xi and x̄i are the minimum and maximum acceptable energy
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43

Fig. 1. Communication Graph in HVAC Example.

consumption, respectively, with xi < x̄i. According to [36,
Thm. 1], this game has a unique NE if

a ≤ 2θγ2/(N − 3),

for N > 3. If we use Lemma 13, the sufficient condition
for having a unique NE is a ≤ 2θγ2/(N − 1) for N > 1,
which is slightly more restrictive than the above condition.
However, considering Remark 4, we need to find ki > 0 such
that the mapping col(kifi(xi, σi), σi − xi) with fi(xi, σi) =
(2θγ2 + a)xi + aNσi − 2θγ2x̂i + b is strongly monotone. By
performing the calculations, we obtain that for all a ∈ R>0

and N ≥ 1, the mapping is strongly monotone if

ki ∈
( (
√

2θγ2 + a−
√

2θγ2 + a(N + 1))2

(aN)2
,

(
√

2θγ2 + a+
√

2θγ2 + a(N + 1))2

(aN)2

)
,

which means that we need less restrictive assumptions
to guarantee uniqueness of the NE and convergence
of the algorithm. We consider N = 5 players in
this game, i.e., I = {1, · · · , 5}, with θγ2 normal-
ized to one, col((x̂i)i∈I) = col(50, 55, 60, 65)(kWh),
col((x̄i)i∈I) = col(60, 66, 72, 78, 84)(kWh), col((xi)i∈I) =
col(40, 44, 46, 52, 56)(kWh), a = 0.04, and b = 5($/(kWh))
[20]. To implement the algorithm, the players are assumed to
communicate through a connected undirected graph depicted
in Fig. 1. Each player randomly chooses the design parameter
ki in the above interval. The initial conditions of σi and ψi
are chosen randomly, and xi(t0) = 0.5(x̄i+xi). The resulting
action variables are depicted in Fig. 2. The fact that the players
converge to the NE of the game can be verified by comparing
the results to the NE computed in [20, Sec. VI-C].

Next, we consider the case where the action set is Xi = R
and bounded disturbances affect the dynamics, and investigate
its robustness. The disturbance vector ν ∈ R10 is added
according to (23), five elements of which are considered as
uniformly distributed random numbers in the interval [−20, 20]
with the sampling time 0.1(s), and the other five elements are
sinusoidal signals with amplitudes between 10 and 20, and
frequencies between 5 to 25(rad/s). As can be seen from Fig. 3,
the action variables remain bounded, which is consistent with
our ISS results. Note that the presence of disturbances results
in deviation of the asymptotic behavior from the NE.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

40

45

50

55

60

65

70

Fig. 2. Action variables of consumers with HVAC systems.

0 1 2 3 4 5 6 7 8 9 10
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45

50

55

60

65

70

Fig. 3. Action variables of consumers with HVAC systems in the presence
of disturbances.

B. Charging Coordination of Electric Vehicles

In this subsection, we consider the problem of charging
coordination for a population I = {1, · · · , N} of plug-in
electrical vehicles (PEVs) [5], [37]. Each agent is aimed at
minimizing its payoff function defined as the summation of
its electricity bill and a quadratic function as follows

Ji(xi, s(x)) =
∑
t∈T

(
a(dt +Ns(xt)) + b

)
xti + qi(x

t
i)

2 + cix
t
i,

where T := {1, · · · , n} is the charging horizon, xi =
col
(
(xti)t∈T

)
is the collection of charging control of the i-th

vehicle at time t, the positive constants a and b respectively
are the price-elasticity coefficient and basic price, dt is the
total non-PEV demand, Ns(xt) =

∑
j∈I x

t
j is the total

PEV demand at time t, and qi and ci are positive constant
parameters. In the payoff function, the quadratic term models
battery degradation cost of PEVs [37]. For each agent, the
charging rate xti is bounded as 0 ≤ xti ≤ x̄i and its summation
for all t ∈ T should be equal to the required energy of
the agent defined as γi. Therefore, the constraint set of xi
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is Xi := X 1
i ∩ X 2

i where

X 1
i : =

{
xi ∈ Rn | xti ∈ [0, x̄i]

}
X 2
i : =

{
xi ∈ Rn |

∑
t∈T

xti = γi
}
. (38)

In practice, it is assumed that nx̄i ≥ γi to grantee that Xi
is non-empty. The goal is to reach to the NE and schedule
charging strategies for the entire horizon, and in this regard,
a gather and broadcast algorithm is presented in [37] which
guarantees convergence when qi > aN [37, Thm. 3.1].

In this problem, we have fi(xi, σi) = (2qi+a)xi+aNσi+
ad+(b+ci)1n with d = col

(
(dt)t∈T

)
; therefore, the mapping

col(kifi(xi, σi), σi − xi) is strongly monotone by choosing

ki ∈
( (
√

2qi + a−
√

2qi + a(N + 1))2

(aN)2
,

(
√

2qi + a+
√

2qi + a(N + 1))2

(aN)2

)
,

and there is no need for the assumption qi > aN . To reach
the NE, each agent can implement (34); however, since Xi is
the intersection of two sets, it is not easy to find a closed-form
expression for the projection operator ΠXi (xi, ·). To overcome
this challenge, we use the fact that xi(t) in the NE dynamics
does not need to belong to Xi for all t ≥ t0, yet it should
converge to the NE inside this set. Therefore, xi ∈ X 2

i can
be treated as a “soft constraint”. Hence, we modify (35) as
follows

ẋ = ΠX 1

(
x,−Kcol

(
(fi(xi, σi))i∈I

)
− (IN ⊗ 1n)λ

)
σ̇ = −σ +Hx− (L⊗ In)ψ

ψ̇ = (L⊗ In)σ

λ̇ = (IN ⊗ 1>n )x− γ,

(39)

where λ = col((λi)i∈I) with the Lagrangian multiplier λi ∈
R, γ = col((γi)i∈I), and X 1 =

∏
i∈I X 1

i with X 1
i defined in

(38). A supplementary discussion on the convergence of the
above algorithm to the NE is provided in Appendix B.

A population of N = 100 players, that can communi-
cate by a connected undirected graph, are considered in this
game, and the charging horizon is from 12:00 a.m. on one
day to 12:00 a.m. on the next day. In order to generate
the numerical parameters, we consider some nominal values
and randomize them similar to [13]. In the price function,
a = 3.8× 10−3 and b = 0.06($/(kWh)) are considered. The
parameters of the quadratic functions are uniformly distributed
random numbers as qi ∼ {0.004} + [−0.001, 0.001] and
ci ∼ {0.075}+[−0.01, 0.01]. In order to generate γi, inspired
by [37], we assume that the battery capacity size of PEVs
are Φi ∼ {30} + [−5, 5](kWh), the initial states of charge
(SOCi0 ) of PEVs satisfy a Gaussian distribution with the
mean 0.5 and variance 0.1, and the final state of charge
(SOCif ) equals to 0.95; thus, γi = Φi(SOCif − SOCi0). In
addition, the maximum admissible charging control is set to
x̄i ∼ {10}+ [−2, 2](kWh).

We select the design parameter of the algorithm as ki =
(2(2qi + a) + aN)/(aN)2, the initial condition of action
variables are xti(t0) = γi/n, and σi(t0), ψi(t0), and λi(t0)

12:00 16:00 20:00 00:00 04:00 08:00 12:00

Charging Intervals

400

450

500

550

600

650

700

Fig. 4. Total non-PEV demand d and its summation with total-PEV demand
at the equilibrium d+

∑
i∈I x

∗
i .

are selected randomly. Fig. 4 illustrates total demand and total
non-PEV demand. As can be seen, the PEVs shifted their
charging intervals to the nighttime, which minimizes their
effects on the grid, and as explained in [5], the NE has the
desired “valley filling” property.

VI. CONCLUSIONS

By employing the structure of aggregative games, we pre-
sented a distributed NE seeking algorithm where each player
calculates its action variable through computing an estimation
of the aggregation term. We provided sufficient conditions for
convergence of the algorithm to the NE of the game. We have
provided privacy guarantees for the algorithm by showing that
private information of the players cannot be reconstructed even
if all communicated variables are accessed by an adversary.
Raised by practical concerns about the accuracy of payoff
functions or rationality of the players, we proved robustness
of the proposed algorithm against time-varying disturbances
in the sense of ISS. Finally, we extended the algorithm to the
case of constrained action sets by using projection operators.
Extension of the results to games with coupling constraints
is left for future work. Moreover, a challenging task is to
provide robustness guarantees in the presence of projections.
Another notable research questions is to use aggregative game
dynamics as optimal controllers steering a physical system.
Examples of the latter in Cournot and Bertrand competitions
can be found in [3] and [38], respectively.
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APPENDIX A: PROOFS OF THE LEMMAS

Proof of Lemma 1. (i) The mapping F is ε-strongly monotone
if

col
(
x− x′,σ − σ′

)>(
F (x,σ)− F (x′,σ′)

)
≥

ε‖x− x′‖2 + ε‖σ − σ′‖2 (40)

for all x,x′ ∈ X =
∏
i∈I Xi and σ,σ′ ∈ RnN . By using (3)

and Assumption 2, we have

(x− x′)>K col
(
(fi(xi, σi)− fi(x′i, σi))i∈I

)
+(x− x′)>K col

(
(fi(x

′
i, σi)− fi(x′i, σ′i))i∈I

)
+(σ − σ′)>

(
(σ −Hx)− (σ′ −Hx′)

)
≥
∑
i∈I

kiµi‖xi − x′i‖2 − (ki`i + hi)‖xi − x′i‖‖σi − σ′i‖

+‖σi − σ′i‖2.

As a result, to establish the inequality in (40), it is sufficient
to define ε := min{εi} where εi > 0 satisfies

kiµi‖xi − x′i‖2 − (ki`i + hi)‖xi − x′i‖‖σi − σ′i‖
+ ‖σi − σ′i‖2 ≥ εi‖xi − x′i‖2 + εi‖σi − σ′i‖2.

Clearly, such εi exists providing that[
kiµi − (ki`i+hi)

2

− (ki`i+hi)
2 1

]
> 0.

http://dx.doi.org/10.1109/TAC.2019.2939639
http://dx.doi.org/10.1109/TCNS.2019.2944300
https://sites.google.com/site/nmonshizadeh/home
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The above positive definiteness condition holds if and only if

ki ∈
(2µi − `ihi − 2

√
µi(µi − `ihi)

`2i
,

2µi − `ihi + 2
√
µi(µi − `ihi)

`2i

)
,

which is equivalent to (4).
(ii) Let σ = 1N⊗s(x) and σ′ = 1N⊗s(x′). By using the

definition of s(x) we get σ − σ′ = 1N ⊗ s(x− x′). Hence,
inequality (40), proven in part (i), becomes

(x− x′)>K col
(
(fi(xi, s(x))− fi(x′i, s(x′)))i∈I

)
+(1N ⊗ s(x− x′))>

(
(1N ⊗ s(x− x′))−H(x− x′)

)
≥ε‖x− x′‖2 + ε‖1N ⊗ s(x− x′)‖2.

(41)

Let
Π := I − 1

N
1N1

>
N . (42)

Then,

(1N ⊗ s(x− x′))−H(x− x′) = −(Π⊗ In)H(x− x′),

where we have used the equality

1N ⊗ s(x− x′) =
1

N
(1N ⊗ 1>N ⊗ In)H(x− x′).

Therefore, the second term on the left hand side of (41) is
zero as 1>NΠ = 0, and the proof is complete. �

Proof of Lemma 3. First, we show that each cost function
Ji(xi, s(x)) is ηi-strongly convex in xi for all x−i ∈ X−i =∏
j 6=i Xj , and for that, it suffices fi(xi, s(x)) to be ηi-strongly

monotone in xi, i.e.,

(xi − x′i)>
(
fi(xi,

hi
N
xi +

1

N

∑
j 6=i

hjxj)−

fi(x
′
i,
hi
N
x′i +

1

N

∑
j 6=i

hjxj)
)
≥ ηi‖xi − x′i‖2,

for all xi, x′i ∈ Xi, x−i ∈ X−i, and some ηi > 0. We can
use Assumption 2 and rewrite the left hand side of the above
inequality as

(xi − x′i)>
(
fi(xi,

hi
N
xi +

1

N

∑
j 6=i

hjxj)−

fi(x
′
i,
hi
N
xi +

1

N

∑
j 6=i

hjxj)
)
+

(xi − x′i)>
(
fi(x

′
i,
hi
N
xi +

1

N

∑
j 6=i

hjxj)−

fi(x
′
i,
hi
N
x′i +

1

N

∑
j 6=i

hjxj)
)
≥ (µi −

`ihi
N

)‖xi − x′i‖2.

(43)

Thus, noting ηi := µi− `ihi
N and µi > `ihi, we conclude that

Ji(xi, s(x)) is ηi-strongly convex. By leveraging this property
and continuity of Ji in Assumption 1, we conclude that each
cost function is radially unbounded with respect to its action

[39, Prop. 1]. Therefore, it follows from [7, Cor. 4.2] that the
game has an NE x̄ which satisfies

col
(
fi(x̄i, s(x̄))i∈I

)
= 0.

For uniqueness of the NE, we resort to a proof by contradic-
tion. Let x̄ and x′ be two different NE that satisfy the above
equality. Choosing ki according to (4) for each i ∈ I, by
Lemma 1(ii), we find that

(x̄− x′)>K col
(
(fi(x̄i, s(x̄))− fi(x′i, s(x′)))i∈I

)
= 0

≥ ε‖x̄− x′‖2,

which holds if and only if x̄ = x′, and we reach a contradic-
tion. This completes the proof. �

Proof of Lemma 13. Under Assumption 3, the game ad-
mits an NE if Ji(xi, s(x)) is strictly convex in xi for all
x−i ∈ X−i =

∏
j 6=i Xj [7, Thm. 4.3], which is satisfied

as a consequence of Assumption 2 (see (43)). We also know
that x̄ ∈ X is an NE if and only if it is a solution of the
variational inequality VI(X , col

(
(fi(xi, s(x)))i∈I

)
) [8, Prop.

1.4.2]. Moreover, since Kcol
(
(fi(xi, s(x)))i∈I

)
is strongly

monotone (Lemma 1(ii)) and X is closed and convex, the
variational inequality VI(X ,Kcol

(
(fi(xi, s(x)))i∈I

)
) has a

unique solution x′ ∈ X [8, Thm. 2.3.3]. Lastly, we need to
show that x̄ is unique and equal to x′.

Clearly, we have

(x− x̄)>col
(
(fi(x̄i, s(x̄)))i∈I

)
≥ 0, ∀x ∈ X ,

which can be rewritten as∑
i∈I

(xi − x̄i)>fi(x̄i, s(x̄)) ≥ 0, ∀x ∈ X .

Let for all i ∈ I\{j}, we have xi = x̄i; thus, by using kj > 0,
the above inequity yields

kj(xj − x̄j)>fj(x̄j , s(x̄)) ≥ 0.

By performing the same procedure for the other compo-
nents of x̄ and re-writing all obtained inequalities into
the vector form, we can see that x̄ is the solution of
VI(X ,Kcol

(
(fi(xi, s(x)))i∈I

)
), i.e., x̄ = x′. Consequently,

since x̄ is an arbitrary solution and x′ is unique, both vari-
ational inequality problems have an identical solution, which
concludes the proof. �

APPENDIX B

On convergence of the Modified NE Seeking Algorithm (39):

Similar to (35), we can guarantee that for any initial condi-
tion (x(t0),σ(t0),ψ(t0),λ(t0)) ∈ X 1 × RnN × RnN × RN ,
the solution of (39) is unique and belongs to X 1 × RnN ×
RnN×RN for almost all t ≥ t0. We claim that such a solution
converges to an equilibrium corresponding to the NE of the
game. To this end, consider the equilibrium point (x̄, σ̄, ψ̄, λ̄)
with σ̄ = 1N ⊗ s(x̄), (L⊗ In)ψ̄ = (Π⊗ In)Hx̄, and

0 = ΠX 1

(
x̄,−Kcol

(
(fi(x̄i, s(x̄)))i∈I

)
−(IN⊗1n)λ̄

)
, (44)

0 = (IN ⊗ 1>n )x̄− γ. (45)
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The second equality implies that x̄ ∈ X 2 =
∏
i∈I X 2

i .
Employing Moreau’s decomposition theorem and (44),
we can perform an analogous analysis to the proof of
Theorem 14 and conclude that x̄ is the solution of
VI(X 1,Kcol

(
(fi(xi, s(x)))i∈I

)
+ (IN ⊗ 1n)λ̄). This means

that x̄ is the solution of the following optimization problem
[8, Eq. 1.2.1]

min
y∈X 1

y>(Kcol
(
(fi(x̄i, s(x̄)))i∈I

)
+ (IN ⊗ 1n)λ̄).

Let gti(x) := col(xti − x̄i,−xti), gi(x) := col
(
(gti(x))t∈T

)
,

and g(x) := col
(
(gi(x))i∈I

)
; then we see that g(x) ≤ 0

represents the set X 1. Therefore, there exist µti ∈ R2 that
satisfy the following KKT conditions

0 = Kcol
(
(fi(x̄i, s(x̄)))i∈I

)
+ (IN ⊗ 1n)λ̄

+
∑
i∈I

∑
t∈T

∂

∂x
gti(x)>µti

0 ≤ µ ⊥ g(x) ≤ 0,

where µ := col
(
(µi)i∈I

)
with µi := col

(
(µti)t∈T

)
. Con-

sidering the above equations together with (45), we con-
clude from [8, Prop. 1.3.4(b)] that x̄ is the solution of
VI(X ,Kcol

(
(fi(xi, s(x)))i∈I

)
), and in turn, it is the NE

of the game. Convergence of the algorithm is similar to
Theorem 14.
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